When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    The definition of local minimum point can also proceed similarly. In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗ , we have f ( x ∗ ) > f ( x ) , and x ∗ is a strict local maximum point if there exists some ε > 0 such ...

  3. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  4. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...

  5. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  6. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  7. Minimal surface - Wikipedia

    en.wikipedia.org/wiki/Minimal_surface

    Variational definition: A surface is minimal if and only if it is a critical point of the area functional for all compactly supported variations. This definition makes minimal surfaces a 2-dimensional analogue to geodesics, which are analogously defined as critical points of the length functional.

  8. Mathematical and theoretical biology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_and...

    The presence of these special steady-state points at certain values of a parameter (e.g. mass) is represented by a point and once the parameter passes a certain value, a qualitative change occurs, called a bifurcation, in which the nature of the space changes, with profound consequences for the protein concentrations: the cell cycle has phases ...

  9. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset S {\displaystyle S} of a preordered set is an element of S {\displaystyle S} which is greater than or equal to any other element of S , {\displaystyle S,} and ...

  1. Related searches what is a local minimum point in math definition quizlet biology grade 9

    local minimum point definitionmaximum and minimum maths