When.com Web Search

  1. Ad

    related to: multi index notation math calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

  3. Casio V.P.A.M. calculators - Wikipedia

    en.wikipedia.org/wiki/Casio_V.P.A.M._calculators

    In 1998, the Casio fx-991W model used a two-tier (multi-line) display and the system was termed as S-V.P.A.M. (Super V.P.A.M.). The model featured a 5×6-dot LCD matrix cells on the top line of the screen and a 7-segment LCD on the bottom line of the screen that had been used in Casio fx-4500P programmable calculators . [ 1 ]

  4. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]

  5. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    With the multi-index notation for partial derivatives of functions of several variables, the Leibniz rule states more generally: =: () ().. This formula can be used to derive a formula that computes the symbol of the composition of differential operators.

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.

  8. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...

  9. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.