When.com Web Search

  1. Ads

    related to: what are indices in math definition geometry worksheet 1

Search results

  1. Results From The WOW.Com Content Network
  2. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.

  3. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...

  4. Abstract index notation - Wikipedia

    en.wikipedia.org/wiki/Abstract_index_notation

    Abstract index notation (also referred to as slot-naming index notation) [1] is a mathematical notation for tensors and spinors that uses indices to indicate their types, rather than their components in a particular basis. [2] The indices are mere placeholders, not related to any basis and, in particular, are non-numerical.

  5. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]

  6. W. V. D. Hodge - Wikipedia

    en.wikipedia.org/wiki/W._V._D._Hodge

    The Hodge index theorem was a result on the intersection number theory for curves on an algebraic surface: it determines the signature of the corresponding quadratic form. This result was sought by the Italian school of algebraic geometry , but was proved by the topological methods of Lefschetz .

  7. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

  8. Geometry of numbers - Wikipedia

    en.wikipedia.org/wiki/Geometry_of_numbers

    Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in R n , {\displaystyle \mathbb {R} ^{n},} and the study of these lattices provides fundamental information on algebraic numbers. [ 1 ]

  9. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.