Ads
related to: two zener diodes in parallel
Search results
Results From The WOW.Com Content Network
For example, a diode with a Zener breakdown voltage of 3.2 V exhibits a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The Zener diode is therefore well suited for applications such as the generation of a reference voltage (e.g. for an amplifier stage), or as a voltage stabilizer for low-current applications. [2]
However, during an ESD event across the domains, one would want a path for the high current to traverse. Without the antiparallel diodes in place, the voltage induced by the ESD event may result in the current following an unknown path that often leads to damage of the device. With the diodes in place the current can travel in either direction.
A simple diode clipper can be made with a diode and a resistor. This will remove either the positive, or the negative half of the waveform depending on the direction the diode is connected. The simple circuit clips at zero voltage (or to be more precise, at the small forward voltage of the forward biased diode) but the clipping voltage can be ...
A bidirectional transient-voltage-suppression diode can be represented by two mutually opposing avalanche diodes in series with one another and connected in parallel with the circuit to be protected. While this representation is schematically accurate, physically the devices are now manufactured as a single component.
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
On the far right is a Zener diode. In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [2] [3] [4] A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric ...