Search results
Results From The WOW.Com Content Network
Double-precision binary floating-point is a commonly used format on PCs, due to its wider range over single-precision floating point, in spite of its performance and bandwidth cost. It is commonly known simply as double. The IEEE 754 standard specifies a binary64 as having: Sign bit: 1 bit; Exponent: 11 bits
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...
In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the corresponding real number arithmetic operations by rounding any result that is not a floating-point number itself to a nearby floating-point number.
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]
The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits, [4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10 308 for double-double versus 1.2 × 10 4932 for binary128).
The latter format makes full use of the CPU's 32-bit integer operations. The characteristic in both formats is an 8-bit field containing the power of two biased by 128. Floating-point arithmetic operations are performed by software, and double precision is not supported at all. The extended format occupies three 16-bit words, with the extra ...
When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...