Search results
Results From The WOW.Com Content Network
Under this scenario, dark energy would ultimately tear apart all gravitationally bound structures, including galaxies and solar systems, and eventually overcome the electrical and nuclear forces to tear apart atoms themselves, ending the universe in a "Big Rip". On the other hand, dark energy might dissipate with time or even become attractive.
Michael S. Turner (born July 29, 1949) [1] is an American theoretical cosmologist who coined the term dark energy in 1998. [2] He is the Rauner Distinguished Service Professor Emeritus of Physics at the University of Chicago, [3] having previously served as the Bruce V. & Diana M. Rauner Distinguished Service Professor, [4] and as the assistant director for Mathematical and Physical Sciences ...
Studies with quintessence dark energy found that it dominates gravitational collapse in a spacetime simulation, based on the holographic thermalization. These results show that the smaller the state parameter of quintessence is, the harder it is for the plasma to thermalize.
Phantom energy is a hypothetical form of dark energy satisfying the equation of state = with <. It possesses negative kinetic energy , and predicts expansion of the universe in excess of that predicted by a cosmological constant , which leads to a Big Rip .
Since the 1990s, studies have shown that, assuming the cosmological principle, around 68% of the mass–energy density of the universe can be attributed to dark energy. [6] [7] [8] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model.
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [6] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...
For example, in the words of W. Israel: “If the source of an effect can be delayed, it should be possible for a system to borrow energy from its ground state, and this implies instability”. [6] It is possible to show that this is a restatement of the Hawking-Ellis vacuum conservation theorem at finite temperature and chemical potential.
This theory led Planck to his new radiation law, but in this version energy resonators possessed a zero-point energy, the smallest average energy a resonator could take on. Planck's radiation equation contained a residual energy factor, one hν / 2 , as an additional term dependent on the frequency ν , which was greater than zero ...