Search results
Results From The WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).
The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i -cycle on X and a j -cycle on Y can be combined to create an ( i + j ) {\displaystyle (i+j)} -cycle on X × Y {\displaystyle X\times Y} ; so that there is an explicit linear mapping defined from ...
The crossed product of a von Neumann algebra by a group G acting on it is similar except that we have to be more careful about topologies, and need to construct a Hilbert space acted on by the crossed product. (Note that the von Neumann algebra crossed product is usually larger than the algebraic crossed product discussed above; in fact it is ...
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...