Search results
Results From The WOW.Com Content Network
where p is the frequency of one allele and q is the frequency of the alternative allele, which necessarily sum to unity. Then, p 2 is the fraction of the population homozygous for the first allele, 2pq is the fraction of heterozygotes, and q 2 is the fraction homozygous for the alternative allele.
A cell is said to be homozygous for a particular gene when identical alleles of the gene are present on both homologous chromosomes. [2] An individual that is homozygous-dominant for a particular trait carries two copies of the allele that codes for the dominant trait. This allele, often called the "dominant allele", is normally represented by ...
Genes may possess multiple variants known as alleles, and an allele may also be said to reside at a particular locus. Diploid and polyploid cells whose chromosomes have the same allele at a given locus are called homozygous with respect to that locus, while those that have different alleles at a given locus are called heterozygous. [3]
In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB. The offspring can inherit a dominant allele from one parent and a recessive allele from the other parent, making them heterozygous with a genotype of Bb.
The Hardy–Weinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the Hardy–Weinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.
An amorphic allele elicits the same phenotype when homozygous and when heterozygous to a chromosomal deletion or deficiency that disrupts the same gene. [2] This relationship can be represented as follows: m/m = m/Df An amorphic allele is commonly recessive to its wildtype counterpart.
Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3] Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant ...
A lethal allele may refer to any allele encoding the disease that results in a terminal condition only in the homozygous or biallelic state. The heterozygous and homozygous phenotype is still expressed in most cases if two different disease-causing alleles are present.