Search results
Results From The WOW.Com Content Network
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
For the thin-walled assumption to be valid the vessel must have a wall thickness of no more than about one-tenth (often cited as one twentieth) of its radius. The cylinder stress, in turn, is the average force exerted circumferentially (perpendicular both to the axis and to the radius of the object) in the cylinder wall, and can be described as:
Pulmonary (lung) circulation undergoes hypoxic vasoconstriction, which is a unique mechanism of local regulation in that the blood vessels in this organ react to hypoxemia, or low levels of dissolved oxygen in blood, in the opposite way as the rest of the body. While tissues and organs tend to increase blood flow by vasodilating in response to ...
Regurgitation is blood flow in the opposite direction from normal, as the backward flowing of blood into the heart or between heart chambers. It is the circulatory equivalent of backflow in engineered systems. It is sometimes called reflux.
The aorta distributes oxygenated blood to all parts of the body through the systemic circulation. [30] Appendix – The appendix (or vermiform appendix; also cecal [or caecal] appendix; vermix; or vermiform process) is a finger-like, blind-ended tube connected to the cecum, from which it develops in the embryo.
The branchial hearts have two atria and one ventricle each, and pump to the gills, whereas the systemic heart pumps to the body. [ 161 ] [ 162 ] Only the chordates (including vertebrates) and the hemichordates have a central "heart", which is a vesicle formed from the thickening of the aorta and contracts to pump blood.
Coalescent angiogenesis is a mode of angiogenesis, considered to be the opposite of intussusceptive angiogenesis, where capillaries fuse, or coalesce, to make a larger bloodvessel, thereby increasing blood flow and circulation. [14] Coalescent angiogenesis has extended out of the domain of embryology.
The circulatory system uses the channel of blood vessels to deliver blood to all parts of the body. This is a result of the left and right sides of the heart working together to allow blood to flow continuously to the lungs and other parts of the body. Oxygen-poor blood enters the right side of the heart through two large veins.