Search results
Results From The WOW.Com Content Network
Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines, logistic regression, and artificial neural networks).
A particular problem with BatchNorm is that during training, the mean and variance are calculated on the fly for each batch (usually as an exponential moving average), but during inference, the mean and variance were frozen from those calculated during training. This train-test disparity degrades performance.
The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter . [10] The alternative form of the Greek letter phi, φ {\textstyle \varphi } , is also used quite often.
The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,
Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...
Since scales a normalized variable, it can be used to invert the transformation, and make it decorrelated and unit-variance: = has zero mean and identity covariance. This is called the Mahalanobis whitening transform .
The Vysochanskij–Petunin inequality generalizes Gauss's inequality, which only holds for deviation from the mode of a unimodal distribution, to deviation from the mean, or more generally, any center. [42] If X is a unimodal distribution with mean μ and variance σ 2, then the inequality states that
A much simpler result, stated in a section above, is that the variance of the product of zero-mean independent samples is equal to the product of their variances. Since the variance of each Normal sample is one, the variance of the product is also one. The product of two Gaussian samples is often confused with the product of two Gaussian PDFs.