Search results
Results From The WOW.Com Content Network
The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .
The tangent plane is an affine concept, because its definition is independent of the choice of a metric. In other words, any affine transformation maps the tangent plane to the surface at a point to the tangent plane to the image of the surface at the image of the point.
Development can be generalized further using flat connections. From this point of view, rolling the tangent plane over a surface defines an affine connection on the surface (it provides an example of parallel transport along a curve), and a developable surface is one for which this connection is flat.
The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}
The Gaussian curvature of the ruled surface vanishes if and only if u t and v are proportional, [47] This condition is equivalent to the surface being the envelope of the planes along the curve containing the tangent vector v and the orthogonal vector u, i.e. to the surface being developable along the curve. [48]
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
Tangent developable of a curve with zero torsion. The tangent developable is a developable surface; that is, it is a surface with zero Gaussian curvature.It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one ...
The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself. For example, if the given manifold is a -sphere, then one can picture the tangent space at a point as the plane that touches the sphere at that point and is perpendicular to the