When.com Web Search

  1. Ad

    related to: point at infinity definition geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Point at infinity - Wikipedia

    en.wikipedia.org/wiki/Point_at_infinity

    The real line with the point at infinity; it is called the real projective line. In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane.

  3. Ideal point - Wikipedia

    en.wikipedia.org/wiki/Ideal_point

    In hyperbolic geometry, an ideal point, omega point [1] or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line l and a point P not on l, right- and left-limiting parallels to l through P converge to l at ideal points. Unlike the projective case, ideal points form a boundary, not a submanifold. So, these ...

  4. Projectively extended real line - Wikipedia

    en.wikipedia.org/wiki/Projectively_extended_real...

    More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0, 1 and ∞.

  5. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    There is a point at infinity corresponding to each direction (numerically given by the slope of a line), informally defined as the limit of a point that moves in that direction away from the origin. Parallel lines in the Euclidean plane are said to intersect at a point at infinity corresponding to their common direction.

  6. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be performed in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem.

  7. Projective line - Wikipedia

    en.wikipedia.org/wiki/Projective_line

    In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a point at infinity.The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case).

  8. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    in K 3 —called the line at infinity. The points at infinity are the "extra" points where parallel lines intersect in the construction of the extended real plane; the point (0, x 1, x 2) is where all lines of slope x 2 / x 1 intersect. Consider for example the two lines = {(,):}

  9. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    The pole of the x-axis is the point of infinity of the vertical lines and the pole of the y-axis is the point of infinity of the horizontal lines. The construction of a correlation based on inversion in a circle given above can be generalized by using inversion in a conic section (in the extended real plane).