Search results
Results From The WOW.Com Content Network
A piezoelectric disk generates a voltage when deformed (change in shape is greatly exaggerated) A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo-is Greek for 'press' or 'squeeze'. [1]
The cross-section of a piezoelectric accelerometer. The word piezoelectric finds its roots in the Greek word piezein, which means to squeeze or press. When a physical force is exerted on the accelerometer, the seismic mass loads the piezoelectric element according to Newton's second law of motion (=). The force exerted on the piezoelectric ...
Integrated Electronics Piezo-Electric (IEPE) characterises a technical standard for piezoelectric sensors which contain built-in impedance conversion electronics. IEPE sensors are used to measure acceleration, force or pressure. Measurement microphones also apply the IEPE standard. Other proprietary names for the same principle are ICP, CCLD ...
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
A yaw-rate sensor is a gyroscopic device that measures a vehicle's yaw rate, its angular velocity around its vertical axis. The angle between the vehicle's heading and velocity is called its slip angle , which is related to the yaw rate.
Employment grew to 25 employees. By 1975, PCB® had become one of the largest U.S. manufacturers of piezoelectric sensors. [citation needed] During the 1980s, PCB® continued to develop new products. In 1982, the Structural* Modal Array Sensing System was developed to ease sensor installation and reduce set-up time on larger-scale modal surveys.
Ultrasonic motors also offer arbitrarily large rotation or sliding distances, while piezoelectric actuators are limited by the static strain that may be induced in the piezoelectric element. One common application of ultrasonic motors is in camera lenses where they are used to move lens elements as part of the auto-focus system.
In this case, when a force is applied at the free end of the nanowire to bend it, the piezopotential distribution will be perpendicular to the axis of the nanowire. The introduced piezoelectric field is perpendicular to electron transport direction, just like applying a gate voltage in the traditional field-effect transistor. Thus the electron ...