Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
This acceleration is known as centripetal acceleration. For a path of radius r , when an angle θ is swept out, the distance traveled on the periphery of the orbit is s = rθ . Therefore, the speed of travel around the orbit is v = r d θ d t = r ω , {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega ,} where the angular rate of rotation is ω .
The centripetal acceleration given by v 2 / r is normal to the arc and inward. When the particle passes the connection of pieces, it experiences a jump-discontinuity in acceleration given by v 2 / r , and it undergoes a jerk that can be modeled by a Dirac delta, scaled to the jump-discontinuity.
This acceleration and the mass of the particle determine the necessary centripetal force, directed toward the centre of the circle, as the net force acting on this particle to keep it in this uniform circular motion.
To find the magnitude of F 2 (r) from the original central force F 1 (r), Newton calculated their difference F 2 (r) − F 1 (r) using geometry and the definition of centripetal acceleration.
When any moving vehicle is making a turn, it is necessary for the forces acting on the vehicle to add up to a net inward force, to cause centripetal acceleration. In the case of an aircraft making a turn, the force causing centripetal acceleration is the horizontal component of the lift acting on the aircraft.
Transverse acceleration (perpendicular to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, circular motion ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration = =
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),