Search results
Results From The WOW.Com Content Network
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
Usually, there are many ways to implement the same ADT, using several different concrete data structures. Thus, for example, an abstract stack can be implemented by a linked list or by an array. Different implementations of the ADT, having all the same properties and abilities, can be considered semantically equivalent and may be used somewhat ...
If a set of data structures need to be included in only one linked list, then internal storage is slightly better, unless a generic linked list package using external storage is available. Likewise, if different sets of data that can be stored in the same data structure are to be included in a single linked list, then internal storage would be ...
Adjacency list [2] Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices. This data structure allows the storage of additional data on the vertices. Additional data can be stored if edges are also stored as objects, in which case each vertex stores its incident edges and each edge stores its incident ...
The abstract data type (ADT) can be represented in a number of ways, including a list of parents with pointers to children, a list of children with pointers to parents, or a list of nodes and a separate list of parent-child relations (a specific type of adjacency list).
This article compares the syntax for defining and instantiating an algebraic data type (ADT), sometimes also referred to as a tagged union, in various programming languages. Examples of algebraic data types
the singly linked list, which can be used to implement a queue and is defined in Haskell as the ADT data List a = Nil | Cons a (List a), and; the binary tree, which allows fast searching, and can be defined in Haskell as the ADT data BTree a = Nil | Node (BTree a) a (BTree a) [12]
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.