When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The number of gradient descent iterations is commonly proportional to the spectral condition number of the system matrix (the ratio of the maximum to minimum eigenvalues of ), while the convergence of conjugate gradient method is typically determined by a square root of the condition number, i.e., is much faster.

  3. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  4. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    As observed above, is the negative gradient of at , so the gradient descent method would require to move in the direction r k. Here, however, we insist that the directions must be conjugate to each other. A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search ...

  6. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  7. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Methods that evaluate gradients, or approximate gradients in some way (or even subgradients): Coordinate descent methods: Algorithms which update a single coordinate in each iteration; Conjugate gradient methods: Iterative methods for large problems. (In theory, these methods terminate in a finite number of steps with quadratic objective ...

  9. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    In more detail, we have to statistically estimate: = () The REINFORCE estimator, widely used in reinforcement learning and especially policy gradient, [4] uses the following equality: = (⁡ ()) = [(⁡ ()) ()] This allows the gradient to be estimated: = (⁡ ()) The REINFORCE estimator has high variance, and many methods were developed to ...