Search results
Results From The WOW.Com Content Network
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
When expressed in percent, it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10 −2). The mole fraction is called amount fraction by the International Union of Pure and Applied Chemistry (IUPAC) [ 1 ] and amount-of-substance fraction by the U.S. National Institute of Standards and ...
where is the molar concentration, and is the molar mass of the component . Mass percentage. Mass percentage is defined as the mass fraction multiplied by 100. ...
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Static light scattering measures the product of weight-averaged molar mass and concentration of macromolecules in solution. Given a fixed total concentration of one or more species over the measurement time, the scattering signal is a direct measure of the weight-averaged molar mass of the solution, which will vary as complexes form or dissociate.
The difference is quite significant when dealing with gases, and it is very important to specify which quantity is being used. For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74 ...
C is the concentration [mmol/L] or [mol/m 3] (in the United States often [mg/mL]) From the above definitions it follows that d C d t {\displaystyle {\frac {dC}{dt}}} is the first derivative of concentration with respect to time, i.e. the change in concentration with time.