When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". [1]

  3. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    It is often used in solving ill-posed problems or to prevent overfitting. [2] Although regularization procedures can be divided in many ways, the following delineation is particularly helpful: Explicit regularization is regularization whenever one explicitly adds a term to the optimization problem. These terms could be priors, penalties, or ...

  4. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    Usually, the stop condition is given by the overfitting over the training set. [7] For each iteration, is sampled a batch of size from the training set, and for each triple of the batch is sampled a random corrupted fact—i.e., a triple that does not represent a true fact in the knowledge graph. [7]

  5. Goodhart's law - Wikipedia

    en.wikipedia.org/wiki/Goodhart's_law

    Goodhart's law is an adage often stated as, "When a measure becomes a target, it ceases to be a good measure". [1] It is named after British economist Charles Goodhart, who is credited with expressing the core idea of the adage in a 1975 article on monetary policy in the United Kingdom: [2]

  6. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC for sample sizes greater than 7. [1]

  7. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  8. This ridiculous math problem is infuriating the Internet - AOL

    www.aol.com/news/2016-04-01-this-ridiculous-math...

    RELATED: Math Riddle about Cheryl's birthday stumps the Internet: Math Riddle About Cheryl's Birthday Stumps the Internet. Show comments. Advertisement. Advertisement. Holiday Shopping Guides.

  9. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data. In contrast, algorithms with high bias typically produce simpler models that may fail to capture important regularities (i.e. underfit) in the data.