Search results
Results From The WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited. Thus, the collection of search trees is a spanning forest of the graph. The strongly connected components will be recovered as certain subtrees of this forest.
More specific types spanning trees, existing in every connected finite graph, include depth-first search trees and breadth-first search trees. Generalizing the existence of depth-first-search trees, every connected graph with only countably many vertices has a Trémaux tree. [28] However, some uncountable-order graphs do not have such a tree. [29]
This tree is known as a depth-first search tree or a breadth-first search tree according to the graph exploration algorithm used to construct it. [18] Depth-first search trees are a special case of a class of spanning trees called Trémaux trees, named after the 19th-century discoverer of depth-first search. [19]
In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.
All depth-first search trees and all Hamiltonian paths are Trémaux trees. In finite graphs, every Trémaux tree is a depth-first search tree, but although depth-first search itself is inherently sequential, Trémaux trees can be constructed by a randomized parallel algorithm in the complexity class RNC.
All together, an iterative deepening search from depth all the way down to depth expands only about % more nodes than a single breadth-first or depth-limited search to depth , when =. [ 4 ] The higher the branching factor, the lower the overhead of repeatedly expanded states, [ 1 ] : 6 but even when the branching factor is 2, iterative ...
Maze generation animation using Wilson's algorithm (gray represents an ongoing random walk). Once built the maze is solved using depth first search. All the above algorithms have biases of various sorts: depth-first search is biased toward long corridors, while Kruskal's/Prim's algorithms are biased toward many short dead ends.