Search results
Results From The WOW.Com Content Network
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
In operator notation, the element in parentheses can be considered a single coherent unit; fluid dynamics uses this convention extensively, terming it the convective derivative—the "moving" derivative of the fluid. Note that () is an operator that takes scalar to a scalar. It can be extended to operate on a vector, by separately operating on ...
The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.
The derivative with respect to a vector as discussed above can be generalized to a derivative with respect to a general multivector, called the multivector derivative. Let F {\displaystyle F} be a multivector-valued function of a multivector.
Following a differential geometric way of expressing this definition, [28] we can in the above-mentioned (,)-coordinate system state that the gradient magnitude of the scale-space representation, which is equal to the first-order directional derivative in the -direction , should have its first order directional derivative in the -direction ...
These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. [1] The directional derivative provides a systematic way of finding these derivatives. [2]