Search results
Results From The WOW.Com Content Network
The condition number with respect to L 2 arises so often in numerical linear algebra that it is given a name, the condition number of a matrix. If ‖ ⋅ ‖ {\displaystyle \|\cdot \|} is the matrix norm induced by the L ∞ {\displaystyle L^{\infty }} (vector) norm and A {\displaystyle A} is lower triangular non-singular (i.e. a i i ≠ 0 ...
In linear algebra and numerical analysis, a preconditioner of a matrix is a matrix such that has a smaller condition number than . It is also common to call T = P − 1 {\displaystyle T=P^{-1}} the preconditioner, rather than P {\displaystyle P} , since P {\displaystyle P} itself is rarely explicitly available.
This condition is always satisfied if K is algebraically closed (for instance, if it is the field of complex numbers). The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called the algebraic multiplicity of the eigenvalue.
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
Specifically, the singular value decomposition of an complex matrix is a factorization of the form =, where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition ...
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius. Condition number The condition number of a nonsingular matrix is defined as = ‖ ‖ ‖ ‖. In case of a symmetric matrix it is the absolute value of the quotient of the largest and smallest eigenvalue.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...