Ads
related to: factoring word problem solving
Search results
Results From The WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
Solving algebraic equations may be viewed as a problem of polynomial factorization. In fact, the fundamental theorem of algebra can be stated as follows: every polynomial in x of degree n with complex coefficients may be factorized into n linear factors x − a i , {\displaystyle x-a_{i},} for i = 1, ..., n , where the a i s are the roots of ...
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
In this section, we show that factoring over Q (the rational numbers) and over Z (the integers) is essentially the same problem.. The content of a polynomial p ∈ Z[X], denoted "cont(p)", is, up to its sign, the greatest common divisor of its coefficients.
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
The word FOIL is an acronym for the four terms of the product: First ("first" terms of each binomial are multiplied together) Outer ("outside" terms are multiplied—that is, the first term of the first binomial and the second term of the second) Inner ("inside" terms are multiplied—second term of the first binomial and first term of the second)
Object-oriented decomposition breaks a large system down into progressively smaller classes or objects that are responsible for part of the problem domain. According to Booch, algorithmic decomposition is a necessary part of object-oriented analysis and design, but object-oriented systems start with and emphasize decomposition into objects. [2]