When.com Web Search

  1. Ad

    related to: solving logarithmic function

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    [45] [46] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently. [47] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: ⁡ = + ⁡ = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ⁡ ( x ⋅ y ) = ln ⁡ x + ln ⁡ y ...

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  5. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In number theory , the more commonly used term is index : we can write x = ind r a (mod m ) (read "the index of a to the base r modulo m ") for r x ≡ a (mod m ) if r is a primitive root of m and gcd ...

  6. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...

  7. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...

  8. Logarithmic integral function - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_integral_function

    Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.

  9. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    A corollary to this is that the logarithmic derivative of the reciprocal of a function is the negation of the logarithmic derivative of the function: (/) ′ / = ′ / / = ′, just as the logarithm of the reciprocal of a positive real number is the negation of the logarithm of the number.