When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    When clustering text databases with the cover coefficient on a document collection defined by a document by term D matrix (of size m×n, where m is the number of documents and n is the number of terms), the number of clusters can roughly be estimated by the formula where t is the number of non-zero entries in D. Note that in D each row and each ...

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Density model s: for example, DBSCAN and OPTICS defines clusters as connected dense regions in the data space. Subspace model s: in biclustering (also known as co-clustering or two-mode-clustering), clusters are modeled with both cluster members and relevant attributes.

  5. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    [2] Global-K Means: Global K-means is an algorithm that begins with one cluster, and then divides in to multiple clusters based on the number required. [2] KMeans: An algorithm that requires two parameters 1. K (a number of clusters) 2. Set of data. [2] FW-KMeans: Used with vector space model. Uses the methodology of weight to decrease noise. [2]

  6. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Like DBSCAN, OPTICS requires two parameters: ε, which describes the maximum distance (radius) to consider, and MinPts, describing the number of points required to form a cluster. A point p is a core point if at least MinPts points are found within its ε -neighborhood N ε ( p ) {\displaystyle N_{\varepsilon }(p)} (including point p itself).

  7. Deion Sanders CANNOT fix Cowboys & did we forget about the ...

    www.aol.com/sports/deion-sanders-cannot-fix...

    Last-minute meaningful gifts for your wife that will arrive by Christmas

  8. SUBCLU - Wikipedia

    en.wikipedia.org/wiki/SUBCLU

    SUBCLU is an algorithm for clustering high-dimensional data by Karin Kailing, Hans-Peter Kriegel and Peer Kröger. [1] It is a subspace clustering algorithm that builds on the density-based clustering algorithm DBSCAN. SUBCLU can find clusters in axis-parallel subspaces, and uses a bottom-up, greedy strategy to remain efficient.

  9. Why not all 'high-protein' food products are good for you - AOL

    www.aol.com/why-not-high-protein-food-070000397.html

    For example, some products contained the phrase “rich in protein,” and others listed the amount of protein in the product. Researchers found that 13% of the examined products, or 561 items ...