When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperpyramid - Wikipedia

    en.wikipedia.org/wiki/Hyperpyramid

    2-dimensional hyperpyramid with a line segment as base 4-dimensional hyperpyramid with a cube as base. In geometry, a hyperpyramid is a generalisation of the normal pyramid to n dimensions. In the case of the pyramid one connects all vertices of the base (a polygon in a plane) to a point outside the plane, which is the peak. The pyramid's ...

  3. 5-cell - Wikipedia

    en.wikipedia.org/wiki/5-cell

    In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...

  4. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    4-dimensional hyperpyramid with a cube as base. The hyperpyramid is the generalization of a pyramid in n-dimensional space. In the case of the pyramid, one connects all vertices of the base, a polygon in a plane, to a point outside the plane, which is the peak. The pyramid's height is the distance of the peak from the plane.

  5. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...

  6. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.

  7. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  8. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    Another proof of the above relation, which avoids multi-dimensional integration, uses induction: The base case is n = 0, where the proportionality is obvious. For the inductive step, assume that proportionality is true in dimension n − 1. Note that the intersection of an n-ball with a hyperplane is an (n − 1)-ball.

  9. Types of mesh - Wikipedia

    en.wikipedia.org/wiki/Types_of_mesh

    Basic three-dimensional cell shapes. The basic 3-dimensional element are the tetrahedron, quadrilateral pyramid, triangular prism, and hexahedron. They all have triangular and quadrilateral faces. Extruded 2-dimensional models may be represented entirely by the prisms and hexahedra as extruded triangles and quadrilaterals.