When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of Newton's method are approximately 26214, 24904, 23658, 22476, decreasing slowly, with only the 200th ...

  4. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    The second indicates that one can remedy the divergent behavior by introducing an additional real root, at the cost of slowing down the speed of convergence. One can also in the case of odd degree polynomials first find a real root using Newton's method and/or an interval shrinking method, so that after deflation a better-behaved even-degree ...

  5. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  6. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    For finding one root, Newton's method and other general iterative methods work generally well. For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB.

  8. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial (), then Laguerre's method converges cubically whenever the initial guess, (), is close enough to the root . On the other hand, when x 1 {\displaystyle x_{1}} is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1] A "zero" of a function is thus an input value that produces an output ...