Search results
Results From The WOW.Com Content Network
In analog circuits a high impedance node is one that does not have any low impedance paths to any other nodes in the frequency range being considered.Since the terms low and high depend on context to some extent, it is possible in principle for some high impedance nodes to be described as low impedance in one context, and high impedance in another; so the node (perhaps a signal source or ...
Many of these devices protect electrical systems and individual system components from damage when an unwanted event occurs such as an electrical fault. Historically, a single protective function was performed by one or more distinct electromechanical devices, so each device would receive its own number.
Realistically, the resistance in a fault can be from close to zero to fairly high relative to the load resistance. A large amount of power may be consumed in the fault, compared with the zero-impedance case where the power is zero. Also, arcs are highly non-linear, so a simple resistance is not a good model.
After the cable fault is identified and located, it is then possible to “burn it in” using burner devices, in other words to convert it from a high-impedance fault to a low-impedance fault. For this a Burn Down Instrument, such as Baur ATG2 Burn Down Transformer or a similar device, can be used.
For that reason, high-impedance voltage measurements of normally non-energized objects must be verified. Verification of a voltage reading is performed using a low-impedance voltmeter, which usually has a shunt resistor load bridging the voltmeter terminals. Since very little current can flow from a coupled surface through the small shunt or ...
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The impedance may be a resistor, or an inductor (coil). In a high-impedance grounded system, the fault current is limited to a few amperes (exact values depend on the voltage class of the system); a low-impedance grounded system will permit several hundred amperes to flow on a fault.
Earth fault protection also requires current transformers and senses an imbalance in a three-phase circuit. Normally the three phase currents are in balance, i.e. roughly equal in magnitude. If one or two phases become connected to earth via a low impedance path, their magnitudes will increase dramatically, as will current imbalance.