Ad
related to: simplify expression with exponents calculator with variables
Search results
Results From The WOW.Com Content Network
In 1748, Leonhard Euler introduced variable exponents, and, implicitly, non-integer exponents by writing: Consider exponentials or powers in which the exponent itself is a variable. It is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. [18]
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
When the exponent is zero, the result is always 1 (e.g. is always rewritten to 1). [17] However , being undefined, should not appear in an expression, and care should be taken in simplifying expressions in which variables may appear in exponents.
They may also be performed, in a similar way, on variables, algebraic expressions, [2] and more generally, on elements of algebraic structures, such as groups and fields. [3] An algebraic operation may also be defined more generally as a function from a Cartesian power of a given set to the same set. [4]
An expression is often used to define a function, by taking the variables to be arguments, or inputs, of the function, and assigning the output to be the evaluation of the resulting expression. [5] For example, x ↦ x 2 + 1 {\displaystyle x\mapsto x^{2}+1} and f ( x ) = x 2 + 1 {\displaystyle f(x)=x^{2}+1} define the function that associates ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
If a denotes a number, a variable, another polynomial, or, more generally, any expression, then P(a) denotes, by convention, the result of substituting a for x in P. Thus, the polynomial P defines the function a ↦ P ( a ) , {\displaystyle a\mapsto P(a),} which is the polynomial function associated to P .
Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...