Search results
Results From The WOW.Com Content Network
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
An axon can divide into many branches called telodendria (Greek for 'end of tree'). At the end of each telodendron is an axon terminal (also called a terminal bouton or synaptic bouton, or end-foot). [20] Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections ...
An autapse is a synapse in which the axon of one neuron transmits signals to its own dendrite. The general structure of the dendrite is used to classify neurons into multipolar, bipolar and unipolar types. Multipolar neurons are composed of one axon and many dendritic trees.
However, action potentials may end prematurely in certain places where the safety factor is low, even in unmyelinated neurons; a common example is the branch point of an axon, where it divides into two axons. [56] Some diseases degrade myelin and impair saltatory conduction, reducing the conduction velocity of action potentials.
The arborization and branching of end-processes are one of the features responsible for the structural and functional similarities among various cell types. [ note 1 ] Podocytes and pericytes share many physiological properties due to their large surface areas and intricate network of primary and secondary processes that wrap around their ...
The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. [ 1 ] In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.
The bulb-like end of the axon, called the axon terminal, is separated from the dendrite of the following neuron by a small gap called a synaptic cleft. When the action potential travels to the axon terminal, neurotransmitters are released across the synapse and bind to the post-synaptic receptors, continuing the nerve impulse. [4]
Established collateral branches, like the main axon, exhibit a growth cone and develop independently of the main axon tip. Overall, axon elongation is the product of a process known as tip growth. In this process, new material is added at the growth cone while the remainder of the axonal cytoskeleton remains stationary.