Search results
Results From The WOW.Com Content Network
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Product One-way Two-way MANOVA GLM Mixed model Post-hoc Latin squares; ADaMSoft: Yes Yes No No No No No Alteryx: Yes Yes Yes Yes Yes Analyse-it: Yes Yes No
scikit-learn – extends SciPy with a host of machine learning models (classification, clustering, regression, etc.) Shogun (toolbox) – open-source, large-scale machine learning toolbox that provides several SVM (Support Vector Machine) implementations (like libSVM, SVMlight) under a common framework and interfaces to Octave, MATLAB, Python, R
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
scikit-learn (a free and open-source machine learning library for the Python programming language). Weka (a free and open-source data-mining suite, contains many decision tree algorithms), Notable commercial software: MATLAB, Microsoft SQL Server, and; RapidMiner, SAS Enterprise Miner, IBM SPSS Modeler,
Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]
R has built-in functions [22] and packages that provide functions for hierarchical clustering. [23] [24] [25] SciPy implements hierarchical clustering in Python, including the efficient SLINK algorithm. scikit-learn also implements hierarchical clustering in Python. Weka includes hierarchical cluster analysis.