Search results
Results From The WOW.Com Content Network
In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the separator, and a rule on the right of it. These three parts are contained in curly brackets: {()} or {: ()}.
For a function of n variables the number of prime implicants can be as large as /, [25] e.g. for 32 variables there may be over 534 × 10 12 prime implicants. Functions with a large number of variables have to be minimized with potentially non-optimal heuristic methods, of which the Espresso heuristic logic minimizer was the de facto standard ...
For a boolean function of n variables , …,, a maxterm is a sum term in which each of the n variables appears exactly once (either in its complemented or uncomplemented form). Thus, a maxterm is a logical expression of n variables that employs only the complement operator and the disjunction operator ( logical OR ).
Kolmogorov had shown in the previous year that any function of several variables can be constructed with a finite number of three-variable functions. Arnold then expanded on this work to show that only two-variable functions were in fact required, thus answering Hilbert's question when posed for the class of continuous functions.
Here z is the free variable, while x and y are dependent on z. Any point in the solution set can be obtained by first choosing a value for z, and then computing the corresponding values for x and y. Each free variable gives the solution space one degree of freedom, the number of which is equal to the dimension of the solution set.
The following polynomials in two variables X 1 and X 2 are symmetric: + + + + (+) as is the following polynomial in three variables X 1, X 2, X 3: . There are many ways to make specific symmetric polynomials in any number of variables (see the various types below).
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables. When the separating variable is chosen, the RUR exists and is unique. In particular h and the g i are defined independently of any algorithm to compute ...