When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    Geometry (from the Ancient Greek: γεωμετρία; geo-"earth", -metron "measurement") arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers . Classic geometry was focused in compass and straightedge constructions.

  3. Greek mathematics - Wikipedia

    en.wikipedia.org/wiki/Greek_mathematics

    Greek mathematics constitutes an important period in the history of mathematics: fundamental in respect of geometry and for the idea of formal proof. [44] Greek mathematicians also contributed to number theory, mathematical astronomy, combinatorics, mathematical physics, and, at times, approached ideas close to the integral calculus. [45] [46]

  4. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  6. Timeline of ancient Greek mathematicians - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_ancient_Greek...

    For the most part, straightedge and compass constructions dominated ancient Greek mathematics and most theorems and results were stated and proved in terms of geometry. These proofs involved a straightedge (such as that formed by a taut rope), which was used to construct lines, and a compass, which was used to construct circles.

  7. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Ancient Greek mathematicians first conceived straightedge-and-compass constructions, and a number of ancient problems in plane geometry impose this restriction. The ancient Greeks developed many constructions, but in some cases were unable to do so. Gauss showed that some polygons are constructible but that most are not.

  8. The Ancient Tradition of Geometric Problems - Wikipedia

    en.wikipedia.org/wiki/The_Ancient_Tradition_of...

    The Ancient Tradition of Geometric Problems studies the three classical problems of circle-squaring, cube-doubling, and angle trisection throughout the history of Greek mathematics, [1] [2] also considering several other problems studied by the Greeks in which a geometric object with certain properties is to be constructed, in many cases through transformations to other construction problems. [2]

  9. Ostomachion - Wikipedia

    en.wikipedia.org/wiki/Ostomachion

    In ancient Greek geometry, the Ostomachion, also known as loculus Archimedius (from Latin 'Archimedes' box') or syntomachion, is a mathematical treatise attributed to Archimedes. This work has survived fragmentarily in an Arabic version and a copy, the Archimedes Palimpsest , of the original ancient Greek text made in Byzantine times.