Search results
Results From The WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1.
The space diagonal of the unit cube is √ 3. Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 3 (√7 is not possible due to Legendre's three-square theorem) This projection of the Bilinski dodecahedron is a rhombus with diagonal ratio √ 3.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
The GRIM test is straightforward to perform. For each reported mean in a paper, the sample size (N) is found, and all fractions with denominator N are calculated. The mean is then checked against this list (being aware of the fact that values may be rounded inconsistently: depending on the context, a mean of 1.125 may be reported as 1.12 or 1.13).
Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context. [2] The purpose of the proof is not primarily to convince its readers that 22 / 7 (or 3 + 1 / 7 ) is indeed bigger than π; systematic methods of computing the value of π ...