When.com Web Search

  1. Ads

    related to: kinematic equation practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges: = + = + = (+) = + (). Here θ i and θ f are, respectively, the initial and final angular positions, ω i and ω f are, respectively, the initial and final angular velocities, and α ...

  3. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  7. Transport theorem - Wikipedia

    en.wikipedia.org/wiki/Transport_theorem

    The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.

  8. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.

  9. Inverse kinematics - Wikipedia

    en.wikipedia.org/wiki/Inverse_kinematics

    The kinematics equations of the figure define the relationship between the joint angles of the figure and its pose or configuration. The forward kinematic animation problem uses the kinematics equations to determine the pose given the joint angles. The inverse kinematics problem computes the joint angles for a desired pose of the figure.