Ad
related to: function of nitrate in plants
Search results
Results From The WOW.Com Content Network
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
Nitrate is a chemical compound that serves as a primary form of nitrogen for many plants. ... leading to altered microbial community structures and functions.
Nitrogen is the most critical element obtained by plants from the soil, to the exception of moist tropical forests where phosphorus is the limiting soil nutrient, [36] and nitrogen deficiency often limits plant growth. [37] Plants can use nitrogen as either the ammonium cation (NH 4 +) or the anion nitrate (NO 3 −).
Nitrate reductase can be used to test nitrate concentrations in biofluids. [18] Nitrate reductase promotes amino acid production in tea leaves. [19] Under south Indian conditions, it is reported that tea plants sprayed with various micronutrients (like Zn, Mn and B) along with Mo enhanced the amino acid content of tea shoots and also the crop ...
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants , fungi and certain bacteria that can fix nitrogen gas (N 2 ) depend on the ability to assimilate nitrate or ammonia for their needs.
Plants that contribute to N2 fixation include the legume family – Fabaceae – with taxa such as kudzu, clovers, soybeans, alfalfa, lupines, peanuts, and rooibos.They contain symbiotic bacteria called rhizobia within the nodules, producing nitrogen compounds that help the plant to grow and compete with other plants.
Nitrogen is a fundamental nutrient in agriculture, playing a crucial role in plant growth and development. It is an essential component of proteins, enzymes, chlorophyll, and nucleic acids, all of which are essential for various metabolic processes within plants. [2]
Plants that contribute to nitrogen fixation include those of the legume family—Fabaceae— with taxa such as kudzu, clover, soybean, alfalfa, lupin, peanut and rooibos. [45] They contain symbiotic rhizobia bacteria within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. [58]