Search results
Results From The WOW.Com Content Network
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle . The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).
This formula is also true for other units of measurement such as in feet. The relationship of versine, chord and radius is derived from the Pythagorean theorem. Based on the diagram on the right: = We can replace OC with r (radius) minus v, OA with r and AC with L/2 (half a chord).
Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.
The term chord function may refer to: Diatonic function – in music, the role of a chord in relation to a diatonic key; In mathematics, the length of a chord of a circle as a trigonometric function of the length of the corresponding arc; see in particular Ptolemy's table of chords .
If a bicentric quadrilateral has tangency chords k, l and diagonals p, q, then it has area [8]: p.129 = +. If k, l are the tangency chords and m, n are the bimedians of the quadrilateral, then the area can be calculated using the formula [9]
It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy (an earlier table of chords by Hipparchus gave chords only for arcs that were multiples of 7 + 1 / 2 ° = π / 24 radians). [2]
Hipparchus. The concepts of angle and radius were already used by ancient peoples of the first millennium BC.The Greek astronomer and astrologer Hipparchus (190–120 BC) created a table of chord functions giving the length of the chord for each angle, and there are references to his using polar coordinates in establishing stellar positions. [2]