When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flux linkage - Wikipedia

    en.wikipedia.org/wiki/Flux_linkage

    The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop. The flux Φ {\displaystyle \Phi } through the surface delimited by a coil turn exists independently of the presence of the coil.

  3. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    In contrast, different amounts of radiation are absorbed, because the upward flux entering any layer is usually greater than the downward flux. In "line-by-line" methods, the change in spectral intensity ( dI λ , W/sr/m 2 /μm) is numerically integrated using a wavelength increment small enough (less than 1 nm) to accurately describe the shape ...

  4. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Stefan surmised that 1/3 of the energy flux from the Sun is absorbed by the Earth's atmosphere, so he took for the correct Sun's energy flux a value 3/2 times greater than Soret's value, namely 29 × 3/2 = 43.5. Precise measurements of atmospheric absorption were not made until 1888 and 1904. The temperature Stefan obtained was a median value ...

  5. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.

  6. Coenergy - Wikipedia

    en.wikipedia.org/wiki/Coenergy

    If there is a finite change in flux linkage from one value to another (e.g. from to ), it can be calculated as: = () (If the changes are cyclic there will be losses for hysteresis and eddy currents. The additional energy for this would be taken from the input energy, so that the flux linkage to the coil is not affected by the losses and the ...

  7. Non-equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Non-equilibrium_thermodynamics

    The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. When the system is in local equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and ...

  8. Stopping power (particle radiation) - Wikipedia

    en.wikipedia.org/wiki/Stopping_power_(particle...

    Electronic stopping refers to the slowing down of a projectile ion due to the inelastic collisions between bound electrons in the medium and the ion moving through it. The term inelastic is used to signify that energy is lost during the process (the collisions may result both in excitations of bound electrons of the medium, and in excitations of the electron cloud of the ion as well).

  9. Radiative flux - Wikipedia

    en.wikipedia.org/wiki/Radiative_flux

    In geophysics, shortwave flux is a result of specular and diffuse reflection of incident shortwave radiation by the underlying surface. [3] This shortwave radiation, as solar radiation, can have a profound impact on certain biophysical processes of vegetation, such as canopy photosynthesis and land surface energy budgets, by being absorbed into the soil and canopies. [4]