When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flux linkage - Wikipedia

    en.wikipedia.org/wiki/Flux_linkage

    The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop. The flux Φ {\displaystyle \Phi } through the surface delimited by a coil turn exists independently of the presence of the coil.

  3. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Stefan surmised that 1/3 of the energy flux from the Sun is absorbed by the Earth's atmosphere, so he took for the correct Sun's energy flux a value 3/2 times greater than Soret's value, namely 29 × 3/2 = 43.5. Precise measurements of atmospheric absorption were not made until 1888 and 1904. The temperature Stefan obtained was a median value ...

  4. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    In contrast, different amounts of radiation are absorbed, because the upward flux entering any layer is usually greater than the downward flux. In "line-by-line" methods, the change in spectral intensity ( dI λ , W/sr/m 2 /μm) is numerically integrated using a wavelength increment small enough (less than 1 nm) to accurately describe the shape ...

  5. Coenergy - Wikipedia

    en.wikipedia.org/wiki/Coenergy

    If there is a finite change in flux linkage from one value to another (e.g. from to ), it can be calculated as: = () (If the changes are cyclic there will be losses for hysteresis and eddy currents. The additional energy for this would be taken from the input energy, so that the flux linkage to the coil is not affected by the losses and the ...

  6. Radiative transfer equation and diffusion theory for photon ...

    en.wikipedia.org/wiki/Radiative_transfer...

    The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.

  7. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  8. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.

  9. Discrete ordinates method - Wikipedia

    en.wikipedia.org/wiki/Discrete_Ordinates_Method

    The method of discrete ordinates, or the S n method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radiative transfer.