Search results
Results From The WOW.Com Content Network
Alternatively, one can just add half of the last digit to the penultimate digit (or the remaining number). If that number is an even natural number, the original number is divisible by 4. Also, one can simply divide the number by 2, and then check the result to find if it is divisible by 2. If it is, the original number is divisible by 4.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Every composite number can be written as the product of two or more (not necessarily distinct) primes. [2] For example, the composite number 299 can be written as 13 × 23, and the composite number 360 can be written as 2 3 × 3 2 × 5; furthermore, this representation is unique up to the order of the factors.
Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.)
A divisor of any number of digits can be used. In this example, 1260257 is to be divided by 37. First the problem is set up as follows: 37)1260257 Digits of the number 1260257 are taken until a number greater than or equal to 37 occurs. So 1 and 12 are less than 37, but 126 is greater.
42 is a pronic number, [1] an abundant number [2] as well as a highly abundant number, [3] a practical number, [4] an admirable number, [5] and a Catalan number. [6]The 42-sided tetracontadigon is the largest such regular polygon that can only tile a vertex alongside other regular polygons, without tiling the plane.
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).