Search results
Results From The WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Kinematic diagram of Cartesian (coordinate) robot A plotter is a type of Cartesian coordinate robot.. A Cartesian coordinate robot (also called linear robot) is an industrial robot whose three principal axes of control are linear (i.e. they move in a straight line rather than rotate) and are at right angles to each other. [1]
Dia loads and saves diagrams in a custom XML format which is, by default, gzipped to save space. It can print large diagrams spanning multiple pages [4] and can also be scripted using the Python programming language.
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [ 1 ] [ 2 ] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation .
The Mobile Robot Programming Toolkit (MRPT) is a cross-platform software C++ library for helping robotics researchers design and implement algorithms related to simultaneous localization and mapping (SLAM), computer vision, and motion planning (obstacle avoidance). Different research groups have employed MRPT to implement projects reported in ...
Other software, like HFSS can also compute the near field. The far field radiation pattern may be represented graphically as a plot of one of a number of related variables, like the field strength at a constant (large) radius (an amplitude pattern or field pattern), the power per unit solid angle (power pattern) and the directive gain.
The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted () where represents the coordinates of the origin of the frame attached to the body, and () represents the rotation matrices that define the orientation of this frame relative to a ground ...
In this configuration, the controlled endpoint or end-effector is the point D, where the objective is to control its x and y coordinates in the plane in which the linkage resides. The angles theta 1 and theta 2 can be calculated as a function of the x,y coordinates of point D using trigonometric functions .