Search results
Results From The WOW.Com Content Network
The canonical Watson-Crick base pairs, G:C and A:T/U as well as most of the non-canonical ones are stabilized by two or more (e.g. 3 in the case of G:C cWW) hydrogen bonds. Justifiably, a significant amount of research on non-canonical base pairs has been carried out towards bench-marking their strengths (interaction energies) and (geometric ...
In biology, parts of the DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters, tend to have a high AT content, making the strands easier to pull apart. [29] In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen ...
Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. [1] The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. [2]
Non-covalent hydrogen bonds between the bases are shown as dashed lines. The wiggly lines stand for the connection to the pentose sugar and point in the direction of the minor groove. Hydrogen bonding is the chemical interaction that underlies the base-pairing rules described above.
An ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. The simplest case is a pair of water molecules with one hydrogen bond between them, which is called the water dimer and is often used as a model system. When more molecules are present, as is ...
Non-canonical DNA structures can be perceived as damage by the cell, and recent work has shown an increased prevalence of mutations near non-B-DNA-forming sequences. [37] Some of these mutations are due to the interactions between H-DNA and the enzymes involved in DNA replication and transcription, where H-DNA interferes with these processes ...
Polymers form when multiple monomers of the same or similar molecular species are connected to each other by chemical bonds, either in a linear chain or a non-linear conglomeration. Examples include the individual nucleotides which form nucleic acid polymers; the individual amino acids which form polypeptides; and the individual proteins which ...
The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as ...