Search results
Results From The WOW.Com Content Network
The optical atmospheric window is the optical portion of the electromagnetic spectrum that passes through the Earth's atmosphere, excluding its infrared part; [10] although, as mentioned before, the optical spectrum also includes the IR spectrum and thus the optical window could include the infrared window (8 – 14 μm), the latter is ...
Nearly all atmospheric water vapor or moisture is found in the troposphere, so it is the layer where most of Earth's weather takes place. It has basically all the weather-associated cloud genus types generated by active wind circulation, although very tall cumulonimbus thunder clouds can penetrate the tropopause from below and rise into the ...
A common optical phenomenon involving water droplets is the glory. [23] A glory is an optical phenomenon, appearing much like an iconic Saint's halo about the head of the observer, produced by light backscattered (a combination of diffraction, reflection and refraction) towards its source by a cloud of uniformly sized water droplets. A glory ...
The windows are themselves dependent upon clouds, water vapor, trace greenhouse gases, and other components of the atmosphere. [ 8 ] Out of an average 340 watts per square meter (W/m 2 ) of solar irradiance at the top of the atmosphere, about 200 W/m 2 reaches the surface via windows, mostly the optical and infrared.
Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer , it describes the absorption and scattering of radiation in a medium , such as a plasma , dielectric , shielding material , glass, etc.
Opacity of the Earth's atmosphere: the radio window spans larger wavelengths. The radio window is the region of the radio spectrum that penetrate the Earth's atmosphere . Typically, the lower limit of the radio window's range has a value of about 10 MHz (λ ≈ 30 m); the best upper limit achievable from optimal terrestrial observation sites is ...
Kramers' opacity law describes the opacity of a medium in terms of the ambient density and temperature, assuming that the opacity is dominated by bound-free absorption (the absorption of light during ionization of a bound electron) or free-free absorption (the absorption of light when scattering a free ion, also called bremsstrahlung). [1]
The optical depth for a slant path is τ = mτ′, where τ′ refers to a vertical path, m is called the relative airmass, and for a plane-parallel atmosphere it is determined as m = sec θ where θ is the zenith angle corresponding to the given path.