Search results
Results From The WOW.Com Content Network
The mechanism of acid-catalyzed hydrolysis of esters is the reverse of Fischer esterification. Acid is only required in catalytic amounts, as in Fischer esterification, and an excess of water drives the equilibrium towards carboxylic acid and alcohol. [1]
The hydrolysis of esters can occur through either acid and base catalyzed mechanisms, both of which proceed through a tetrahedral intermediate. In the base catalyzed mechanism the reactant goes from a neutral species to negatively charged intermediate in the rate determining (slow) step , while in the acid catalyzed mechanism a positively ...
In acid-catalyzed Fischer esterification, the proton binds to oxygens and functions as a Lewis acid to activate the ester carbonyl (top row) as an electrophile, and converts the hydroxyl into the good leaving group water (bottom left). Both lower the kinetic barrier and speed up the attainment of chemical equilibrium.
Pig liver esterase (PLE) is a widely used enzyme for asymmetric ester hydrolysis. Although it was originally used for the desymmetrizing hydrolysis of glutarate esters, [3] PLE also hydrolyzes malonates, cyclic diesters, monoesters, and other substrates. Active site models have been advanced to explain the selectivity of PLE. [4]
Acid-catalyzed hydrolysis of esters produces carboxylic acids that also catalyze the same reaction. Indeed, the observation of an accelerating hydrolysis of gamma valerolactone to gamma-hydroxyvaleric acid led to the introduction of the concept of autocatalysis in 1890. [4] The oxidation of hydrocarbons by air or oxygen is the basis of ...
In biochemistry, an esterase is a class of enzyme that splits esters into an acid and an alcohol in a chemical reaction with water called hydrolysis (and as such, it is a type of hydrolase). A wide range of different esterases exist that differ in their substrate specificity, their protein structure, and their biological function.
It should be appreciated that the Pinner reaction refers specifically to an acid catalyzed process, but that similar results can often be achieved using base catalysis. The two approaches can be complementary, with nitriles which are unreactive under acid conditions often giving better results in the presence of base, and vice versa. [9]
Two common modes of Lewis acid catalysis in reactions with polar mechanisms. In reactions with polar mechanisms, Lewis acid catalysis often involves binding of the catalyst to Lewis basic heteroatoms and withdrawing electron density, which in turn facilitates heterolytic bond cleavage (in the case of Friedel-Crafts reaction) or directly activates the substrate toward nucleophilic attack (in ...