When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same ...

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Exceptionally, the golden ratio is equal to the limit of the ratios of successive terms in the Fibonacci sequence and sequence of Lucas numbers: [42] + = + =. In other words, if a Fibonacci and Lucas number is divided by its immediate predecessor in the sequence, the quotient approximates ⁠ φ {\displaystyle \varphi } ⁠ .

  4. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The ratio between two consecutive elements converges to the golden ratio, except in the case of the sequence which is constantly zero and the sequences where the ratio of the two first terms is (). The sequence can be written in the form

  5. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    Inspired by a similar Stolarsky array previously defined by Stolarsky (1977), Morrison (1980) defined the Wythoff array as follows. Let = + denote the golden ratio; then the th winning position in Wythoff's game is given by the pair of positive integers (⌊ ⌋, ⌊ ⌋), where the numbers on the left and right sides of the pair define two complementary Beatty sequences that together include ...

  6. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    This characterization is exact: every sequence of complex numbers that can be written in the above form is constant-recursive. [20] For example, the Fibonacci number is written in this form using Binet's formula: [21] =,

  7. Metallic mean - Wikipedia

    en.wikipedia.org/wiki/Metallic_mean

    Since the inverse of a metallic mean is less than 1, this formula implies that the quotient of two consecutive elements of such a sequence tends to the metallic mean, when k tends to the infinity. For example, if n = 1 , {\displaystyle n=1,} S n {\displaystyle S_{n}} is the golden ratio .

  8. Reciprocal Fibonacci constant - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant

    The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.

  9. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Fibonacci search has an average- and worst-case complexity of O(log n) (see Big O notation). The Fibonacci sequence has the property that a number is the sum of its two predecessors. Therefore the sequence can be computed by repeated addition. The ratio of two consecutive numbers approaches the Golden ratio, 1.618... Binary search works by ...