Search results
Results From The WOW.Com Content Network
Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": [1] Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers. Therefore, the result obtained may have little meaning if not totally erroneous.
This gives from 6 to 9 significant decimal digits precision. If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single ...
This is described in a SIGGRAPH 2000 paper [6] (see section 4.3) and further documented in US patent 7518615. [7] It was popularized by its use in the open-source OpenEXR image format. Nvidia and Microsoft defined the half datatype in the Cg language, released in early 2002, and implemented it in silicon in the GeForce FX, released in late 2002 ...
Decimal digits is the precision of the format expressed in terms of an equivalent number of decimal digits. It is computed as digits × log 10 base. E.g. binary128 has approximately the same precision as a 34 digit decimal number. log 10 MAXVAL is a measure of the range of the encoding.
This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string.
The 2008 revision extended the previous standard where it was necessary, added decimal arithmetic and formats, tightened up certain areas of the original standard which were left undefined, and merged in IEEE 854 (the radix-independent floating-point standard). In a few cases, where stricter definitions of binary floating-point arithmetic might ...
If a decimal string with at most 15 significant digits is converted to the IEEE 754 double-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string.
The 1620 was a decimal-digit machine which used discrete transistors, yet it had hardware (that used lookup tables) to perform integer arithmetic on digit strings of a length that could be from two to whatever memory was available. For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was ...