Search results
Results From The WOW.Com Content Network
In 1971, Stephen Cook published his paper "The complexity of theorem proving procedures" [2] in conference proceedings of the newly founded ACM Symposium on Theory of Computing. Richard Karp's subsequent paper, "Reducibility among combinatorial problems", [1] generated renewed interest in Cook's paper by providing a list of 21 NP-complete problems.
As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP. However, after this problem was proved to be NP-complete, proof by reduction provided a simpler way to show that many other problems are also NP-complete ...
For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable. SAT is the first problem that was proven to be NP-complete—this is the Cook–Levin theorem.
The concept of NP-completeness was introduced in 1971 (see Cook–Levin theorem), though the term NP-complete was introduced later. At the 1971 STOC conference, there was a fierce debate between the computer scientists about whether NP-complete problems could be solved in polynomial time on a deterministic Turing machine .
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]
Lisa Cook, one of President Joe Biden's nominees to serve on the Federal Reserve board, defended her academic record and professional experience during a Senate confirmation hearing on Thursday ...
Conway circle theorem (Euclidean plane geometry) Cook's theorem (computational complexity theory) Corners theorem (arithmetic combinatorics) Corona theorem (complex analysis) Courcelle's theorem (graph theory) Cousin's lemma (real analysis) Cox's theorem (probability) Craig's theorem (mathematical logic) Craig's interpolation theorem ...