When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cook–Levin theorem - Wikipedia

    en.wikipedia.org/wiki/Cook–Levin_theorem

    In 1971, Stephen Cook published his paper "The complexity of theorem proving procedures" [2] in conference proceedings of the newly founded ACM Symposium on Theory of Computing. Richard Karp's subsequent paper, "Reducibility among combinatorial problems", [1] generated renewed interest in Cook's paper by providing a list of 21 NP-complete problems.

  3. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP. However, after this problem was proved to be NP-complete, proof by reduction provided a simpler way to show that many other problems are also NP-complete ...

  4. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  5. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    The concept of NP-completeness was introduced in 1971 (see Cook–Levin theorem), though the term NP-complete was introduced later. At the 1971 STOC conference, there was a fierce debate between the computer scientists about whether NP-complete problems could be solved in polynomial time on a deterministic Turing machine .

  6. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable. SAT is the first problem that was proven to be NP-complete—this is the Cook–Levin theorem.

  7. Circuit satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Circuit_satisfiability_problem

    The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]

  8. Propositional proof system - Wikipedia

    en.wikipedia.org/wiki/Propositional_proof_system

    For example, just as counting cannot be done by an circuit family of subexponential size, many tautologies relating to the pigeonhole principle cannot have subexponential proofs in a proof system based on bounded-depth formulas (and in particular, not by resolution-based systems, since they rely solely on depth 1 formulas).

  9. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Kodaira vanishing theorem (complex manifold) Koebe 1/4 theorem (complex analysis) Kolmogorov extension theorem (stochastic processes) Kolmogorov's three-series theorem (mathematical series) Kolmogorov–Arnold representation theorem (real analysis, approximation theory) Kolmogorov–Arnold–Moser theorem (dynamical systems) KÅ‘nig's theorem ...