Search results
Results From The WOW.Com Content Network
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes.
In prokaryotes, the FEN enzyme is found as an N-terminal domain of DNA polymerase I, but some prokaryotes appear to encode a second homologue. [ 1 ] [ 2 ] [ 3 ] The endonuclease activity of FENs was initially identified as acting on a DNA duplex which has a single-stranded 5' overhang on one of the strands [ 4 ] (termed a "5' flap", hence the ...
DNA secondary structure can inhibit flap processing at certain trinucleotide repeats in a length-dependent manner by concealing the 5' end of the flap that is necessary for both binding and cleavage by the protein encoded by this gene. Therefore, secondary structure can deter the protective function of this protein, leading to site-specific ...
DNA polymerase's rapid catalysis due to its processive nature. Processivity is a characteristic of enzymes that function on polymeric substrates. In the case of DNA polymerase, the degree of processivity refers to the average number of nucleotides added each time the enzyme binds a template.
The Klenow fragment is a large protein fragment produced when DNA polymerase I from E. coli is enzymatically cleaved by the protease subtilisin.First reported in 1970, [1] it retains the 5' → 3' polymerase activity and the 3’ → 5’ exonuclease activity for removal of precoding nucleotides and proofreading, but loses its 5' → 3' exonuclease activity.
As DNA polymerase moves in a 3' to 5' direction along the template strand, it synthesizes a new strand in the 5' to 3' direction Although there are differences between eukaryotic and prokaryotic DNA synthesis, the following section denotes key characteristics of DNA replication shared by both organisms.
The exonuclease domain is a DEDDy-type DnaQ-like domain common to the B-DNA polymerase family. [39] This domain has a beta hairpin structure that helps in switching between the polymerase and exonuclease active sites in case of nucleotide misincorporation. Motifs A and C, which are the most conserved of the polymerase domain.
In DNA replication, for example, formation of the phosphodiester bonds is catalyzed by a DNA polymerase enzyme, using a pair of magnesium cations and other supporting structures. [3] Formation of the bond occurs not only in DNA and RNA replication, but also in the repair and recombination of nucleic acids, and may require the involvement of ...