Search results
Results From The WOW.Com Content Network
Just like for simple graphs, the Laplacian matrix of a directed weighted graph is by definition generally non-symmetric. The symmetry can be enforced by turning the original directed graph into an undirected graph first before constructing the Laplacian.
The matrix vectorization operation can be written in terms of a linear sum. Let X be an m × n matrix that we want to vectorize, and let e i be the i -th canonical basis vector for the n -dimensional space, that is e i = [ 0 , … , 0 , 1 , 0 , … , 0 ] T {\textstyle \mathbf {e} _{i}=\left[0,\dots ,0,1,0,\dots ,0\right]^{\mathrm {T} }} .
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the composition of the corresponding linear maps, and the product of a matrix and a column matrix is the column matrix representing the result of applying the represented linear map to the represented vector. It follows that the theory of finite ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
An alternative approach that uses the matrix form of the quadratic equation is based on the fact that when the center is the origin of the coordinate system, there are no linear terms in the equation. Any translation to a coordinate origin (x 0, y 0), using x* = x – x 0, y* = y − y 0 gives rise to
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.