When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For example, for the 2×2 matrix = [], the half-vectorization is ⁡ = []. There exist unique matrices transforming the half-vectorization of a matrix to its vectorization and vice versa called, respectively, the duplication matrix and the elimination matrix .

  3. Matrix polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_polynomial

    A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The matrix A is said to represent the linear map f, and A is called the transformation matrix of f. For example, the 2×2 matrix = [] can be viewed as the transform of the unit square into a parallelogram with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d).

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    After the algorithm has converged, the singular value decomposition = is recovered as follows: the matrix is the accumulation of Jacobi rotation matrices, the matrix is given by normalising the columns of the transformed matrix , and the singular values are given as the norms of the columns of the transformed matrix .

  8. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.